Share to: share facebook share twitter share wa share telegram print page

Dini–Lipschitz criterion

In mathematics, the Dini–Lipschitz criterion is a sufficient condition for the Fourier series of a periodic function to converge uniformly at all real numbers. It was introduced by Ulisse Dini (1872), as a strengthening of a weaker criterion introduced by Rudolf Lipschitz (1864). The criterion states that the Fourier series of a periodic function f converges uniformly on the real line if

where is the modulus of continuity of f with respect to .

References

  • Dini, Ulisse (1872), Sopra la serie di Fourier, Pisa
  • Golubov, B. I. (2001) [1994], "Dini-Lipschitz criterion", Encyclopedia of Mathematics, EMS Press
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya