DIDO utilizes trademarked expressions and objects[1][2] that facilitate a user to quickly formulate and solve optimal control problems.[8][17][18][19] Rapidity in formulation is achieved through a set of DIDO expressions which are based on variables commonly used in optimal control theory.[2] For example, the state, control and time variables are formatted as:[1][2]
primal.states,
primal.controls, and
primal.time
The entire problem is codified using the key words, cost, dynamics, events and path:[1][2]
where the object defined by algorithm allows a user to choose various options. In addition to the cost value and the primal solution, DIDO automatically outputs all the dual variables that are necessary to verify and validate a computational solution.[2] The output dual is computed by an application of the covector mapping principle.
DIDO is primarily available as a stand-alone MATLAB optimal control toolbox.[29] That is, it does not require any third-party software like SNOPT or IPOPT or other nonlinear programming solvers.[1] In fact, it does not even require the MATLAB Optimization Toolbox.
The MATLAB/DIDO toolbox does not require a "guess" to run the algorithm. This and other distinguishing features have made DIDO a popular tool to solve optimal control problems.[4][7][15]
First general-purpose object-oriented optimal control software
First general-purpose pseudospectral optimal control software
First flight-proven general-purpose optimal control software
First embedded general-purpose optimal control solver
First guess-free general-purpose optimal control solver
Versions
The early versions, widely adopted in academia,[8][15][17][19][6] have undergone significant changes since 2007.[1] The latest version of DIDO, available from Elissar Global,[32] does not require a "guess" to start the problem[33] and eliminates much of the minutia of coding by simplifying the input-output structure.[2]Low-cost student versionsArchived 2021-04-21 at the Wayback Machine and discounted academic versions are also available from Elissar Global.
^ abcdefghijkRoss, I. M. A Primer on Pontryagin's Principle in Optimal Control, Second Edition, Collegiate Publishers, San Francisco, 2015.
^ abcdRoss, I. M.; Karpenko, M. (2012). "A Review of Pseudospectral Optimal Control: From Theory to Flight". Annual Reviews in Control. 36 (2): 182–197. doi:10.1016/j.arcontrol.2012.09.002.
^ abEren, H., "Optimal Control and the Software," Measurements, Instrumentation, and Sensors Handbook, Second Edition, CRC Press, 2014, pp.92-1-16.
^ abcdConway, B. A. (2012). "A Survey of Methods Available for the Numerical Optimization of Continuous Dynamical Systems". Journal of Optimization Theory and Applications. 152 (2): 271–306. doi:10.1007/s10957-011-9918-z. S2CID10469414.
^ abcdA. M. Hawkins, Constrained Trajectory Optimization of a Soft Lunar Landing From a Parking Orbit, S.M. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2005. http://dspace.mit.edu/handle/1721.1/32431
^ abcdQ. Gong, W. Kang, N. Bedrossian, F. Fahroo, P. Sekhavat and K. Bollino, Pseudospectral Optimal Control for Military and Industrial Applications, 46th IEEE Conference on Decision and Control, New Orleans, LA, pp. 4128-4142, Dec. 2007.
^ ab
National Aeronautics and Space Administration. "Fact Sheet: International Space Station Zero-Propellant Maneuver (ZPM) Demonstration." June 10, 2011. (Sept. 13, 2011) [1]
^ abcW. Kang and N. Bedrossian, "Pseudospectral Optimal Control Theory Makes Debut Flight, Saves nasa $1m in Under Three Hours," SIAM News, 40, 2007.
^ abcJ. R. Rea, A Legendre Pseudospectral Method for Rapid Optimization of Launch Vehicle Trajectories, S.M. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2001. http://dspace.mit.edu/handle/1721.1/8608
^ abJosselyn, S.; Ross, I. M. (2003). "A Rapid Verification Method for the Trajectory Optimization of Reentry Vehicles". Journal of Guidance, Control and Dynamics. 26 (3): 505–508. Bibcode:2003JGCD...26..505J. doi:10.2514/2.5074. S2CID14256785.
^ abcD. Delahaye, S. Puechmorel, P. Tsiotras, and E. Feron, "Mathematical Models for Aircraft Trajectory Design : A Survey" Lecture notes in Electrical Engineering, 2014, Lecture Notes in Electrical Engineering, 290 (Part V), pp 205-247
^Karpenko, M., Ross, I. M., Stoneking, E. T., Lebsock, K. L., Dennehy, C., "A Micro-Slew Concept for Precision Pointing of the Kepler Spacecraft," AAS 15-628.
^ abS. E. Li, K. Deng, X. Zang, and Q. Zhang, "Pseudospectral Optimal Control of Constrained Nonlinear Systems," Ch 8, in Automotive Air Conditioning: Optimization, Control and Diagnosis, edited by Q. Zhang, S. E. Li and K. Deng, Springer 2016, pp. 145-166.
^ abRao, A. V. (2014). "Trajectory Optimization: A Survey". Optimization and Optimal Control in Automotive Systems. Lecture Notes in Control and Information Sciences. Vol. LNCIS 455. pp. 3–21. doi:10.1007/978-3-319-05371-4_1. ISBN978-3-319-05370-7.
Kang, W.; Ross, I. M.; Gong, Q. (2008). "Pseudospectral Optimal Control and Its Convergence Theorems". Analysis and Design of Nonlinear Control Systems. Springer Berlin Heidelberg. pp. 109–124. doi:10.1007/978-3-540-74358-3_8. ISBN978-3-540-74357-6. S2CID124435259.
Ross, I. M. (2009). A Primer on Pontryagin's Principle in Optimal Control. Collegiate Publishers. ISBN978-0-9843571-0-9.