Chloromethane, also called methyl chloride, Refrigerant-40, R-40 or HCC 40, is an organic compound with the chemical formula CH3Cl. One of the haloalkanes, it is a colorless, sweet-smelling, flammable gas. Methyl chloride is a crucial reagent in industrial chemistry, although it is rarely present in consumer products,[5] and was formerly utilized as a refrigerant. Most chloromethane is biogenic.
Occurrence
Chloromethane is an abundant organohalogen, anthropogenic or natural, in the atmosphere. Natural sources produce an estimated 4,100,000,000 kg/yr.[6]
Marine
Laboratory cultures of marine phytoplankton (Phaeodactylum tricornutum, Phaeocystis sp., Thalassiosira weissflogii, Chaetoceros calcitrans, Isochrysis sp., Porphyridium sp., Synechococcus sp., Tetraselmis sp., Prorocentrum sp., and Emiliana huxleyi) produce CH3Cl, but in relatively insignificant amounts.[7][8] An extensive study of 30 species of polar macroalgae revealed the release of significant amounts of CH3Cl in only Gigartina skottsbergii and Gymnogongrus antarcticus.[9]
In the sugarcane industry, the organic waste is usually burned in the power cogeneration process. When contaminated by chloride, this waste burns, releasing methyl chloride in the atmosphere.[12]
A smaller amount of chloromethane is produced by treating a mixture of methane with chlorine at elevated temperatures. This method, however, also produces more highly chlorinated compounds such as dichloromethane, chloroform, and carbon tetrachloride. For this reason, methane chlorination is usually only practiced when these other products are also desired. This chlorination method also cogenerates hydrogen chloride, which poses a disposal problem.[5]
CH4 + Cl2 → CH3Cl + HCl
CH3Cl + Cl2 → CH2Cl2 + HCl
CH2Cl2 + Cl2 → CHCl3 + HCl
CHCl3 + Cl2 → CCl4 + HCl
Dispersion in the environment
CH3Cl measured by the Advanced Global Atmospheric Gases Experiment (AGAGE) in the lower atmosphere (troposphere) at stations around the world. Abundances are given as pollution free monthly mean mole fractions in parts per trillion.
Most of the methyl chloride present in the environment ends up being released to the atmosphere. After being released into the air, the atmospheric lifetime of this substance is about 10 months with multiple natural sinks, such as ocean, transport to the stratosphere, soil, etc.[17][18][19]
On the other hand, when the methyl chloride emitted is released to water, it will be rapidly lost by volatilization. The half-life of this substance in terms of volatilization in the river, lagoon and lake is 2.1 h, 25 h and 18 days, respectively.[20][21]
The amount of methyl chloride in the stratosphere is estimated to be 2×106 tonnes per year, representing 20–25% of the total amount of chlorine that is emitted to the stratosphere annually.[22][23]
Chloromethane was widely used as a refrigerant during the 1920s and 1930s, before being replaced by safer alternatives such as chlorofluorocarbons and hydrofluorocarbons. In the late 1920s, some manufacturers promoted methyl chloride as a safer and less odorous option compared to sulfur dioxide and ammonia.[24][25][26] However, a series of fatal leaks in 1928 and 1929 raised serious concerns related to its toxicity and flammability. Although chloromethane has a faint sweet odor, its subtle scent made leaks difficult to detect. To address this issue, acrolein was later added as a nasal-irritating tracer, enhancing leak detection and serving as a warning mechanism.[24][25]
^Zhang W, Jiao Y, Zhu R, Rhew RC (2020). "Methyl Chloride and Methyl Bromide Production and Consumption in Coastal Antarctic Tundra Soils Subject to Sea Animal Activities". Environmental Science & Technology. 54 (20): 13354–13363. Bibcode:2020EnST...5413354Z. doi:10.1021/acs.est.0c04257. PMID32935983. S2CID221745138.
^Carpenter LJ, Reimann S, Burkholder JB, Clerbaux C, Hall BD, Hossaini R, Laube JC, Yvon-Lewis SA (2014). "Update on ODSs and Other Gases of Interest to the Montreal Protocol". WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project.
^Agency for Toxic Substances and Disease Registry (1990). Toxicological profile for chloromethane. Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles. Agency for Toxic Substances and Disease Registry (US). PMID38412209.
^Crutzen PJ, Gidel LT (1983). "The tropospheric budgets of the anthropogenic chlorocarbons CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone". Journal of Geophysical Research. 88: 6641–6661. doi:10.1029/JC088iC11p06641.