Atmospheric correction is the process of adjusting images taken by satellite or airborne sensors to remove distortions caused by the atmosphere. These distortions—mainly due to the scattering and absorption of sunlight by particles and gases—can affect how accurately the sensor captures the true reflectance (or brightness) of the Earth's surface.[1][2]
In remote sensing, atmospheric effects can significantly alter the spectral characteristics of the radiation detected by sensors. This occurs because light must pass through the atmosphere twice—first as sunlight traveling to the Earth's surface, and again as reflected light returning to the sensor—undergoing both absorption and scattering along the way.[3] These distortions can affect the accuracy of surface reflectance measurements and are typically corrected through a range of physical and statistical methods.[4]
Examples of atmospheric correction methods
Examples of atmospheric correction techniques for multispectral remote-sensing images, ordered chronologically to show the historical development of atmospheric correction methods in remote-sensing.
^"Atmospheric Correction". University of Maryland Institute for Advanced Computer Studies. Archived from the original on 7 September 2008. Retrieved 2008-08-18.
^Schowengerdt, Robert (2007). Remote Sensing: Models and Methods for Image Processing. Elsevier Inc. p. 337. ISBN978-0-12-369407-2.
^Schowengerdt, Robert (2007). Remote Sensing: Models and Methods for Image Processing. Elsevier Inc. p. 338. ISBN978-0-12-369407-2.
^Potter, J. F.; Mendolowitz, M. (1975). On the determination of the haze levels from Landsat data. 10th International Symposium on Remote Sensing of Environment. NASA United States. pp. 695–703. 19760052102.
^Switzer, P.; Kowalik, W. S.; Lyon, R. J. (1981). "Estimation of atmospheric path radiance by the covariance matrix method". Photogrammetric Engineering and Remote Sensing. 47: 1469–1476.
^Potter, J. F. (1984). "The channel correlation method for estimating aerosol levels from multispectral scanner data". Photogrammetric Engineering and Remote Sensing. 50: 43–52.
^Singh, S. M.; Cracknell, A. P. (1986). "The estimation of atmospheric effects for SPOT using AVHRR channel-1 data". International Journal of Remote Sensing. 7 (3): 361–377. Bibcode:1986IJRS....7..361S. doi:10.1080/01431168608954692.
^Chavez, P. S. (1988). "An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data". Remote Sensing of Environment. 24 (3): 459–479. Bibcode:1988RSEnv..24..459C. doi:10.1016/0034-4257(88)90019-3.
^Chavez, P. S. (1989). "Radiometric calibration of Landsat Thematic Mapper multispectral images". Photogrammetric Engineering and Remote Sensing. 55 (9): 1285–1294.
^Lavreau, J. (1991). "De-hazing Landsat Thematic Mapper images". Photogrammetric Engineering and Remote Sensing. 57 (10): 1297–1302.
^Holben, B.; Vermote, E.; Kaufman, Y. J.; Tanre, D.; Kalb, V. (1992). "Aerosol retrieval over land from AVHRR data - application for atmospheric correction". IEEE Transactions on Geoscience and Remote Sensing. 30 (2): 212–222. Bibcode:1992ITGRS..30..212H. doi:10.1109/36.134072.
^Wrigley, R. C.; Spanner, M. A.; Slye, R. E.; Pueschel, R. F.; Aggarwal, H. R. (1992). "Atmospheric correction of remotely sensed image data by a simplified model". Journal of Geophysical Research. 97 (D17): 18797–18814. Bibcode:1992JGR....9718797W. doi:10.1029/92JD01347.
^Moran, M. S.; Jackson, R. D.; Slater, P. N.; Teillet, P. M. (1992). "Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output". Remote Sensing of Environment. 41 (2–3): 169–184. Bibcode:1992RSEnv..41..169M. doi:10.1016/0034-4257(92)90076-V.
^Chavez, P. S. Jr. (1996). "Image-based atmospheric corrections-revisited and improved". Photogrammetric Engineering and Remote Sensing. 62 (9): 1025–1036.