This paleobotany list records new fossilplanttaxa that were described during 2022, as well as notes other significant paleobotany discoveries and events which occurred during 2022.
A study on the Paleocene charophyte flora from the South Gobi area in the Junggar Basin (China) and on the Paleogene fossil record of charophytes is published by Cao et al. (2022), who interpret their findings as evidence of the dispersal of charophyte lineages from Asia to Europe in the middle to late Eocene, possibly facilitated by waterbirds.[2]
A green alga belonging to the group Dasycladales. Genus includes "Diplopora" lotharingica Benecke (1898), "Physoporella" jomdaensis Flügel & Mu (1982) and "Physoporella" zamparelliae Parente & Climaco (1999).
Description of new fossil material of Guangdedendron micrum, providing new information on the morphology of this plant, is published by Gao et al. (2022).[17]
Xu, Liu & Wang (2022) describe new fossil material of Sublepidodendron grabaui from the Devonian (Famennian) Wutong Formation (China), providing new information on the morphology of the female reproductive organs of this plant.[18]
A liverwort. Genus includes new species R. unsaltoensis.
Marchantiophyta research
New specimens of Radula heinrichsii, providing new information on the morphology of this liverwort, are described from the Cretaceous Burmese amber by Wang et al. (2022).[22]
A member of the family Hymenophyllaceae. Originally described as a species of Hymenophyllites, but subsequently moved to the genus Trichomanessensu lato by Li et al. (2023).[29]
A fern of uncertain affinities. Originally described as a dennstaedtiaceous fern belonging to the genus Microlepia, but this classification was contested by Zhang (2024).[31] Published online in 2022, but the issue date of the article naming it is listed as March 2023.
Revision of Ginkgo abaniensis, based on data from leaves from the JurassicMura Formation (Russia), is published by Frolov & Mashchuk (2022), who emend the diagnosis of this species, and transfer Ginkgo abaniensis, Ginkgo glinkiensis and Ginkgo capillata to the genus Ginkgoites.[46]
Bodnar et al. (2022) reassess the anatomy and systematics of the permineralized conifer-like woods from the Triassic strata from Argentina, confirm the assignment of the logs related to the families Cupressaceae and Cheirolepidiaceae, as well as three taxa related to Araucariaceae (Agathoxylon cozzoi, Agathoxylon protoaraucana and Agathoxylon argentinum), and argue that the fossil woods previously assigned to the families Podocarpaceae and Taxaceae do not have enough preserved characters to support such assignment.[65]
A study on the pattern of conifer turnover across the Cretaceous-Paleogene boundary in the Raton and Denver basins (Colorado, United States) is published by Berry (2022).[66]
Mantzouka, Akkemik & Güngör (2022) describe fossil woods of Cupressinoxylon matromnense from the middle Miocene Eşelek volcanic deposits (Gökçeada, Turkey), preserved with feeding damage produced by members of the agromyzid genus Protophytobia, and supporting the existence of an eastern Mediterranean Miocene Climatic Optimum hotspot which additionally included Greek islands of Lemnos and Lesbos.[67]
A member of the family Arecaceae belonging to the subfamily Coryphoideae.
Monocot research
Leaf fossils of costapalmate-palms belonging to the genus Sabalites are described from the ?Santonian–CampanianBelly River Group, Campanian Foremost Formation (Alberta, Canada) and MaastrichtianFrenchman Formation (Saskatchewan, Canada) by Greenwood, Conran & West (2022), who interpret the studied fossils as constraining climate reconstructions for the Late Cretaceous high mid-latitudes of North America (c. 55° N) to exclude significant freezing episodes; the authors also transfer the Late Cretaceous species "Geonomites" imperialis to the genus Phoenicites, and reassess Sabalites carolinensis as more likely to be Campanian than Coniacian–Santonian in age.[79]
A study on the impact of the absence of megaherbivores in the aftermath of the Cretaceous–Paleogene extinction event on the evolution of palms is published by Onstein, Kissling & Linder (2022).[80]
A study on the evolutionary history of palms belonging to the group Mauritiinae, as inferred from a phylogenetic analysis incorporating fossil data, is published by Bacon et al. (2022).[81]
Redescription of the Okanagan Highlands genus Langeria with description of associated stipules and reproductive structures plus formal reassignment of the genus to Platanaceae by Huegele & Manchester is published.[83]
A member of Papilionoideae; a new genus for "Diplotropis" claibornensis Herendeen & Dilcher (1990).
Fabalean research
New fossil material of members of the genus Bauhinia is described from the Eocene of the Puyang Basin (China) by Jia et al. (2022), who interpret their findings as the earliest reliable fossil records of Bauhinia in Asia.[106]
Moya et al. (2022) study the affinities of fossil legumes Entrerrioxylon victoriensis, Gossweilerodendroxylon palmariensis, Paraoxystigma concordiensis and Cylicodiscuxylon paragabunensis from the Cenozoic Paraná, Arroyo Feliciano and El Palmar formations (Argentina) with extant West African legumes, and discuss the possible migration routes by which these plants may have arrived in South America from Africa.[107]
A study on the evolutionary history of Dipterocarpaceae, as indicated by biogeography of pollen fossils from Africa and India, molecular data and fossil amber records, is published by Bansal et al. (2022).[119]
A probable Connaraceous wood morphotaxon. The type species is C. dimorphum. First named in 2017 but failed ICBN requirements;[126] subsequently validated in 2022.[125]
A flowering plant of uncertain affinities. Originally described as a species of Phylica. Oskolski et al. (2024) interpreted it as a flowering plant with an affinity to Rhamnaceae, possibly to an extinct basal lineage;[149] on the other hand Beurel et al. (2024) interpreted it as more likely to have lauralean affinities, and made it the type species of the separate genus Nothophylica.[150]
Originally described as a member or a relative of the family Ranunculaceae, but subsequently considered to be a mesangiosperm of uncertain affinities, possibly a magnoliid.[152] Genus includes new species S. lobata and S. acuta.
A flowering plant of uncertain position at the level of ANA-grade angiosperms-Chloranthaceae-magnoliids. Genus includes new species V. globiferus.
General angiosperm research
Surangea mohgaoensis, originally interpreted as fern megaspores, is reinterpreted as angiosperm fruits by Ramteke et al. (2022).[154]
Zhang et al. (2022) describe rich assemblages of spiny plant fossils from the Eocene (Bartonian) Niubao Formation (Tibet, China), preserving seven different spine morphologies, and interpret this finding as evidence of the presence of a diversity of spiny plants in Eocene central Tibet, as well as evidence of a rapid diversification of spiny plants in Eurasia around that time.[155]
A preliminary report on a new fossil angiosperm flora of the Lesvos Petrified Forest at Akrocheiras east of Sigri on Lesbos, Greece is given by Kafetzidou et al. Preliminary taxa identifications are given and commentary on the climactic implications are made.[156]
A study aiming to determine the relationship between past atmospheric CO2 and temperature fluctuations and the shifts in diversification rates of Poaceae and Asteraceae is published by Palazzesi et al. (2022).[157]
A gymnosperm of uncertain phylogenetic placement, possibly having affinities with gnetophytes or angiosperms. Genus includes new species X. quatsinoensis.
A fern-like plant of uncertain affinities. Genus includes new species X. spina.
Other plant research
A study on the xylem development in Leptocentroxyla, and on its implications for the knowledge of the evolution of pith, is published by Tomescu & McQueen (2022).[180]
The first comprehensive crown reconstruction of Medullosa stellata var. typica, based on data from a specimen from the Chemnitz petrified forest (Germany), is presented by Luthardt et al. (2022).[182]
Fossil material of Rhabdotaenia is reported from the Permian Umm Irna Formation (Jordan) by Blomenkemper et al. (2022), representing the northernmost occurrence of this Gondwanan leaf type reported to date.[183]
Pollen of a member of the family Typhaceae/Sparganiaceae. The name is preoccupied by Sparganiaceaepollenites reticulatus Doktorowicz-Hrebnicka (1960) ex Krutzsch & Vanhoorne (1977); DeBenedetti et al. (2025) coined a replacement name Sparganiaceaepollenites intertrappeansis.[188]
A Normapolles-type flowering plant pollen. Genus includes new species Y. mikasaensis.
Research
Review of the studies on the origin of the land flora is published by Bowman (2022).[191]
A study on the evolution of body plans of members of Viridiplantae, based on a review of the fossil record, molecular data and developmental biology, is published by Niklas & Tiffney (2022).[192]
A study on the biodiversity of land plants at the equator during their first major diversification in the Late Silurian–Early Devonian is published by Wellman et al. (2022).[193]
A study on the evolution of heterospory during the Devonian is published by Leslie & Bonacorsi (2022).[194]
Seven coniferous nurse logs that have been colonized by conifer and equisetalean roots are reported from four Permian intervals in the Ordos Basin (China) by Feng et al. (2022), indicating that conifer tree stems probably functioned as hosts to both conspecific and interspecific seedlings in the Cathaysian Flora.[195]
A study on the impact of the Intertropical Convergence Zone in the emerging South Atlantic region on Aptian plant communities from eight Brazilian sedimentary basins is published by Carvalho et al. (2022), who report evidence of an overall predominance of xerophytic plants, attesting to more dry conditions, and of a humidification trend towards the end of the late Aptian resulting in the predominance of hydrophytes, hygrophytes, tropical lowland flora and upland flora, indicative of prevalence of lowland and montane rainforests.[196]
A study on the distribution and relative abundances of major plant groups from the AlbianGates Formation (Alberta, Canada) is published by Kalyniuk et al. (2022).[197]
New Oligocene flora is described from the Dong Ho Formation (Vietnam) by Huang et al. (2022), who interpret the studied fossils as evidence of long-term environmental, floristic and vegetational stability in this region since the Paleogene.[199]
Gentis et al. (2022) describe fossil wood specimens from the Miocene Natma Formation (Myanmar), representing an assemblage dominated by members of the families Fabaceae and Dipterocarpaceae, interpreted as coming from different types of low altitude forest ecosystems (tropical wet evergreen, tropical dry and deciduous, and tropical littoral), and interpreted as indicative of a monsoonal climate with an alternance of a dry season and a wet season.[200]
Abundant compression floras dominated by angiosperm leaves are described from two sites of probable Pliocene age in Brunei by Wilf et al. (2022), who interpret these floras as evidence of dipterocarp-dominated lowland rainforests in the Malay Archipelago before the Pleistocene.[201]
A study on the impact of the extinct Neotropical megafauna on the variability in plant functional traits and biome geography in Central and South America is published by Dantas & Pausas (2022).[202]
A study on plant material from rock overhangs from mid-late Holocene sites along the Kawarau-Cromwell-Roxburgh Gorges in Central Otago (New Zealand), much of which was likely transported as roosting material or consumed by moa birds, and on its implications for the knowledge of the mid-late Holocene regional vegetation of Central Otago and the knowledge of vegetation changes since mid-late Holocene, is published by Pole (2022).[203]
A study on the role of hydraulic failure in the evolution of early vascular plants is published by Bouda et al. (2022), suggesting that drought selection played a key role in the diversification of vascular arrangements beginning with the Devonian explosion.[204]
^LoDuca, S. T.; Meacher, M.; Pepper, P.; Brett, K.; Isotalo, P. A. (2022). "Earltonella fredricksi n. gen n. sp. and Thalassocystis striata (Chlorophyta, Bryopsidales) from the Silurian (Llandoverian) of the Timiskaming outlier, Ontario, Canada". Journal of Paleontology. 97 (2): 516–532. doi:10.1017/jpa.2022.86. S2CID252936182.
^Torromé, D.; Schlagintweit, F. (2022). "Milanovicella? canadillana sp. nov., an Upper Cretaceous supposedly calcitic Dasycladale (green algae) from the middle Santonian–lower Campanian of northeastern Spain". Cretaceous Research. 141 105365. Article 105365. doi:10.1016/j.cretres.2022.105365. S2CID252301204.
^Vachard, D.; Krainer, K. (2022). "Calcareous algae and foraminifers across the Permian-Triassic boundary interval (uppermost Bellerophon Formation and basal Werfen Formation) in the Dolomites (South Tyrol – Trentino, Italy)". Palaeontographica Abteilung A. 324 (1–6): 1–173. Bibcode:2022PalAA.324....1V. doi:10.1127/pala/2022/0128. S2CID250292126.
^Spiekermann, R.; Jasper, A.; Pozzebon-Silva, Â.; Carniere, J. S.; Benício, J. R. W.; Guerra-Sommer, M.; Uhl, D. (2022). "Small but not trivial: Nothostigma sepeensis sp. nov., a lycopsid from the Cisuralian (early Permian) of the Paraná basin, Brazil". Journal of South American Earth Sciences. 122 104188. 104188. doi:10.1016/j.jsames.2022.104188. S2CID255249522.
^Deng, S.; Lu, Y.; Fan, R.; Ma, X.; Lyu, D.; Luo, Z.; Sun, Y. (2022). "A new species of Pleuromeia (Lycopsid) from the upper Middle Triassic of Northern China and discussion on the spatiotemporal distribution and evolution of the genus". Geobios. 75: 1–15. Bibcode:2022Geobi..75....1D. doi:10.1016/j.geobios.2022.10.001.
^Santos, A. A.; Sender, L. M.; Piñuela, L.; García-Ramos, J. C.; Diez, J. B. (2022). "First evidence of Ricciaceae in the Jurassic of the Iberian Peninsula (Asturias, NW Spain): Ricciopsis asturicus sp. nov". Botany Letters. 169 (4): 557–567. Bibcode:2022BotL..169..557S. doi:10.1080/23818107.2022.2124452. S2CID252575717.
^Trevisan, C.; Dutra, T.; Ianuzzi, R.; Sander, A.; Wilberger, T.; Manríquez, L.; Mansilla, H.; Leppe, M. (2022). "Coniopteris antarctica sp. nov. (Pteridophyta) and associated plant assemblage from the Upper Cretaceous of Rip Point, Nelson Island, Antarctica". Cretaceous Research. 136 105185. Bibcode:2022CrRes.13605185T. doi:10.1016/j.cretres.2022.105185. S2CID247684239.
^Zhou, W.; Li, D.; Pšenička, J.; Boyce, C. K.; Wang, S.; Wang, J. (2022). "Diodonopteris virgulata sp. nov., a climbing fern from the early Permian Wuda Tuff Flora and its paleoecology". Review of Palaeobotany and Palynology. 304 104699. Bibcode:2022RPaPa.30404699Z. doi:10.1016/j.revpalbo.2022.104699. S2CID249254419.
^Pšenička, J.; Zhou, W.; Boyce, C. K.; Votočková Frojdová, J.; Bek, J.; Opluštil, S.; Wang, J. (2022). "Two new leptosporangiate ferns from in situ volcanic ash of the Whetstone Horizon (Kladno Formation, Pennsylvanian), Pilsen Basin, Czech Republic". Review of Palaeobotany and Palynology. 299 104608. Bibcode:2022RPaPa.29904608P. doi:10.1016/j.revpalbo.2022.104608.
^Ren, W.-X.; Wu, G.-T.; Han, L.; Hua, Y.-F.; Sun, B.-N. (2023). "New species of fossil Dryopterites from the Lower Cretaceous in the Zhongkouzi Basin, Beishan area, Northwest China, and its geological significance". Historical Biology: An International Journal of Paleobiology. 35 (1): 84–91. Bibcode:2023HBio...35...84R. doi:10.1080/08912963.2021.2022135. S2CID245694205.
^Cantrill, D. J.; Ohlsen, D.; McCurry, M. R.; Frese, M. (2022). "Gleichenia nagalingumiae sp. nov., a remarkably well-preserved fossil species with in situ spores from the Miocene of Australia". Review of Palaeobotany and Palynology. 310 104823. 104823. doi:10.1016/j.revpalbo.2022.104823. S2CID254620225.
^Long, X.; Peng, Y.; Zhang, H.; Fan, Y.; Shi, C.; Wang, S. (2022). "Microlepia burmasia sp. nov., a new fern species from mid-Cretaceous Kachin amber of norther Myanmar (Dennstaedtiaceae, Polypodiales)". Cretaceous Research. 143 105417. 105417. doi:10.1016/j.cretres.2022.105417. S2CID253494172.
^Zhang, W. (2024). "Comment on «Microlepia burmasia sp. nov., a new fern species from mid-Cretaceous Kachin amber of norther Myanmar (Dennstaedtiaceae, Polypodiales) » [Cretaceous Research 143 (2023) 105417]". Cretaceous Research. 166 106010. 106010. doi:10.1016/j.cretres.2024.106010.
^Nishida, H.; Stockey, R. A.; Takebe, Y.; Legrand, J.; Yamada, T. (2022). "Mikasapteris rothwellii gen. et sp. nov., a Permineralized Fertile Pinnule of a Probable Stem Polypod from the Late Cretaceous of Hokkaido, Japan". International Journal of Plant Sciences. 183 (7): 576–586. doi:10.1086/721262. S2CID251086117.
^Morales-Toledo, J.; Mendoza-Ruiz, A. C.; Cevallos-Ferriz, S. R. S. (2022). "The ferns in a new Middle Jurassic locality from the Otlaltepec Formation, Puebla, Mexico". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 113 (2): 127–140. doi:10.1017/S1755691022000093. S2CID249288871.
^Zhang, B.; Li, D.; Wan, M.; Zhou, W.; Pšenička, J.; Bek, J.; Wang, J. (2022). "A new species of Scolecopteris (Marattiales, Psaroniaceae) from the early Permian Wuda Tuff Flora". Review of Palaeobotany and Palynology. 304 104717. Bibcode:2022RPaPa.30404717Z. doi:10.1016/j.revpalbo.2022.104717. S2CID249856474.
^Deshmukh, U. B. (2022). "Wolfeniana, a new replacement name for fossil Pteridophyte genus Gillespiea Erwin & Rothwell (Stauropteridales)". Phytotaxa. 566 (2): 249–250. doi:10.11646/phytotaxa.566.2.11. S2CID252585201.
^ abSun, Y.; Deng, S.; Lu, Y.; Fan, R.; Ma, X.; Lü, D. (2022). "Emendation of the Triassic plant species Glossophyllum shensiense (Ginkgoales) with a review of the genus Glossophyllum Kräusel". Review of Palaeobotany and Palynology. 301 104657. 104657. Bibcode:2022RPaPa.30104657S. doi:10.1016/j.revpalbo.2022.104657. S2CID247811348.
^Nosova, N.; Kostina, E. (2022). "New findings of the female reproductive structures of Umaltolepis Krassilov and associated leaves of Pseudotorellia Florin in the Lower Cretaceous of Mongolia". Review of Palaeobotany and Palynology. 304 104696. Bibcode:2022RPaPa.30404696N. doi:10.1016/j.revpalbo.2022.104696. S2CID249143829.
^ abDong, C.; Shi, G.; Zhang, X.; Wang, Z.; Wang, Y. (2022). "Middle-Late Jurassic fossils from Northeast China confirm the affiliation of Umaltolepis seed-bearing structure and Pseudotorellia leaves". Review of Palaeobotany and Palynology. 306 104763. Bibcode:2022RPaPa.30604763D. doi:10.1016/j.revpalbo.2022.104763. S2CID251917169.
^Frolov, A. O.; Mashchuk, I. M. (2022). "New Discoveries and New Combinations of the Fossil-genus Ginkgoites Seward (Ginkgoales) from the Lower and Middle Jurassic of East Siberia (Russia)". Phytotaxa. 567 (1): 49–60. doi:10.11646/phytotaxa.567.1.4. S2CID252650745.
^Bodnar, J.; Sagasti, A. J.; Correa, G. A.; Miranda, V.; Medina, F. (2022). "Araucariaceous fossil woods from the Upper Triassic Ischigualasto Formation (San Juan Province, Argentina): paleofloristic and paleoclimatic implications". Journal of Paleontology. 96 (6): 1354–1378. Bibcode:2022JPal...96.1354B. doi:10.1017/jpa.2022.45. S2CID251005726.
^Cheng, S.; Xu, S.; Li, F.; Tian, N. (2022). "Occurrence of Brachyoxylon wood from the Upper Jurassic of Beijing, northern China". Historical Biology: An International Journal of Paleobiology. 35 (10): 1941–1949. doi:10.1080/08912963.2022.2127355. S2CID252792439.
^Kvaček, J.; Mendes, M. M. (2022). "A new species of the cheirolepidiaceous conifer Pseudofrenelopsis from the Lower Cretaceous of Figueira da Foz Formation, Portugal". Review of Palaeobotany and Palynology. 309 104821. 104821. doi:10.1016/j.revpalbo.2022.104821. hdl:10316/104361. S2CID254556601.
^Andruchow-Colombo, A.; Gandolfo, M. A.; Escapa, I. H.; Cúneo, N. R. (2022). "New genus of Cupressaceae from the Upper Cretaceous of Patagonia (Argentina) fills a gap in the evolution of the ovuliferous complex in the family". Journal of Systematics and Evolution. 60 (6): 1417–1439. doi:10.1111/jse.12842. S2CID247335891.
^ abcdefPujana, R. R.; Bostelmann, J. E.; Ugalde, R. A.; Riquelme, M. P.; Torres, T. (2022). "Fossil woods from the Pato Raro Heights, Patagonia National Park, Aysén, Chile: A new paleobotanical assemblage at the Oligocene climate transition". Review of Palaeobotany and Palynology. 309 104814. 104814. doi:10.1016/j.revpalbo.2022.104814. S2CID254332837.
^Castañeda, C. (2022). "Podocarpus (Podocarpaceae) wood from Miocene rocks in Panotla, Tlaxcala, Mexico". Journal of South American Earth Sciences. 121 104118. 104118. doi:10.1016/j.jsames.2022.104118. S2CID253859410.
^Jiang, Z.; Tian, N.; Wang, Y.; Li, Y.; Zheng, S.; Xie, A.; Zhu, Y. (2022). "A new structurally preserved fossil umbrella pine from the Jurassic of East Asia". Geological Journal. 57 (9): 3521–3537. Bibcode:2022GeolJ..57.3521J. doi:10.1002/gj.4467. S2CID249799441.
^ abBarbacka, M.; Górecki, A.; Pacyna, G.; Pieńkowski, G.; Philippe, M.; Bóka, K.; Ziaja, J.; Jarzynka, A.; Qvarnström, M.; Niedźwiedzki, G. (2022). "Early Jurassic coprolites: insights into palaeobotany and the feeding behaviour of dinosaurs". Papers in Palaeontology. 8 (2): e1425. Bibcode:2022PPal....8E1425B. doi:10.1002/spp2.1425. S2CID247688865.{{cite journal}}: CS1 maint: article number as page number (link)
^Cai, Y.; Zhang, H.; Feng, Z.; Gou, X.; Byambajav, U.; Zhang, Y.; Yuan, D.; Qie, W.; Xu, H.; Cao, C.; Yarinphil, A.; Shen, S. (2022). "A new conifer stem, Ductoagathoxylon tsaaganensis, from the Upper Permian of the South Gobi Basin, Mongolia and its palaeoclimatic and palaeoecological implications". Review of Palaeobotany and Palynology. 304 104719. Bibcode:2022RPaPa.30404719C. doi:10.1016/j.revpalbo.2022.104719. S2CID250188833.
^Forte, G.; Kustatscher, E.; Nowak, H.; Van Konijnenburg-van Cittert, J. H. A. (2022). "Conifer Cone and Dwarf Shoot Diversity in the Anisian (Middle Triassic) of Kühwiesenkopf/Monte Prà della Vacca (Dolomites, Northeastern Italy)". International Journal of Plant Sciences. 183 (9): 729–767. doi:10.1086/722036. hdl:1874/423545. S2CID252613520.
^Kerp, H.; Bödige, H.; Bomfleur, B.; Schneider, J. W. (2022). "First records of the conifers Majonica and Ortiseia from the German Zechstein (upper Permian) of east Thuringia and west Saxony, Germany". Botany Letters. 169 (4): 423–441. Bibcode:2022BotL..169..423K. doi:10.1080/23818107.2022.2122555. S2CID252504383.
^Bodnar, J.; Cuesta, V.; Escapa, I. H.; Nunes, G. C. (2022). "Exploring the first appearance of the main derived conifer families of Gondwana: evidence provided by the Triassic woods from Argentina". Ameghiniana. 60 (1): 18–47. doi:10.5710/AMGH.16.11.2022.3520. S2CID253785182.
^Berry, K. (2022). "Conifer turnover across the K/Pg boundary in Colorado, U.S.A., parallels South American patterns: New and emerging perspectives". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 303 (1): 11–28. doi:10.1127/njgpa/2022/1035. S2CID246455719.
^Rubalcava-Knoth, M. A.; Cevallos-Ferriz, S. R. S. (2022). "Lauraceous palmately lobed leaf from the middle Cretaceous Cintura Formation (Albian–Cenomanian), Sonora, Mexico: identification based on two comparative models". Cretaceous Research. 140 105355. 105355. Bibcode:2022CrRes.14005355R. doi:10.1016/j.cretres.2022.105355. S2CID252028160.
^ abcdeVasquez-Loranca, A. R.; Cevallos-Ferriz, S. R. S. (2022). "A diverse assemblage of Miocene Lauraceae in Chalatenango, El Salvador". IAWA Journal. 43 (4): 479–507. doi:10.1163/22941932-bja10096. S2CID250465761.
^Rozefelds, A. C.; Rudall, P. J.; Herne, M. C.; Milroy, A. K.; Bridgeman, J. (2022). "A Fossil Syncarpous Fruit from Australia Provides Support for a Gondwanan History for the Screw Pines (Pandanus, Pandanaceae)". International Journal of Plant Sciences. 183 (4): 320–329. doi:10.1086/719431. S2CID247378720.
^ abHuegele, I. B.; Manchester, S. R. (2022). "Newly Recognized Reproductive Structures Linked with Langeria from the Eocene of Washington, USA, and their Affinities with Platanaceae". International Journal of Plant Sciences. 183 (5): 367–379. doi:10.1086/720138. S2CID247907696.
^ abHuegele, I.B.; Zhu, H.; Zhao, B.; Wang, Y.-F.; Manchester, S. R. (2021). "Trans-Beringial Distribution of Platimeliphyllum (Platanaceae) in the Eocene of Eastern Asia and Western North America". International Journal of Plant Sciences. 183 (2): 139–153. doi:10.1086/717692. S2CID239529168.
^ abGolovneva, L. B.; Volynets, E. B.; Zolina, A. A.; Sun, Y. (2022). "New species of Sapindopsis Fontaine (Platanaceae) from the mid-Cretaceous of northeastern Asia and their paleogeographical and evolutionary implications". Cretaceous Research. 142 105391. 105391. doi:10.1016/j.cretres.2022.105391. S2CID252861479.
^Tang, D.-L.; Wang, Z.-E.; Ding, H.; Huang, Y.-T.; Ding, S.-T.; Wu, J.-Y. (2022). "New discovery of Mahonia fossils from the Pliocene of Yunnan, China, and its biogeographical significance". Historical Biology: An International Journal of Paleobiology. 35 (12): 2435–2448. doi:10.1080/08912963.2022.2142912. S2CID253427813.
^Wu, M.-X.; Huang, J.; Manchester, S. R.; Tang, H.; Gao, Y.; Wang, T.-X.; Zhou, Z.-K.; Su, T. (2022). "A new fossil record of Palaeosinomenium (Menispermaceae) from the Upper Eocene in the southeastern margin of the Tibetan Plateau and its biogeographic and paleoenvironmental implications". Review of Palaeobotany and Palynology. 310 104827. 104827. doi:10.1016/j.revpalbo.2022.104827. S2CID255219460.
^ abDoweld, A. B. (2022). "New names of Ilex and Ilexpollenites (Aquifoliaceae), extant and fossil: Addendum Notulae Systematicae ad Palaeofloram Europaeam spectantes II. Aquifoliaceae". Phytotaxa. 531 (2): 143–146. doi:10.11646/phytotaxa.531.2.7.
^Deshmukh, U. B. (2022). "Blackwelloxylon, a new generic name for Cornoxylon (Corneaceae) of central Mississippi (U.S.A.)". Journal of the Botanical Research Institute of Texas. 16 (1): 75. doi:10.17348/jbrit.v16.i1.1223. S2CID250931935.
^Huang, Y.-J.; Zhu, H.; Hu, J.-J.; Jia, L.-B.; Zhou, Z.-K. (2023). "New fossil evidence from the late Pliocene of Yunnan, South China, sheds light on the distribution and diversification of Sambucus L. (Adoxaceae) in the northern low latitudes". Palaeobiodiversity and Palaeoenvironments. 103 (1): 43–56. Bibcode:2023PdPe..103...43H. doi:10.1007/s12549-021-00519-7. S2CID245856680.
^ abcdefgRamos, R. S.; Brea, M.; Kröhling, D. M.; Contreras, S. A. (2022). "New data for palaeoclimatic reconstructions in the upper/middle Uruguay River Basin: caesalpinioid Fabaceae woods in the Late Pleistocene". Botanical Journal of the Linnean Society. 200 (4): 491–523. doi:10.1093/botlinnean/boac023.
^Li, W.-C.; Huang, J.; Chen, L.-L.; Spicer, R. A.; Li, S.-F.; Liu, J.; Gao, Y.; Wu, F.-X.; Farnsworth, A.; Valdes, P. J.; Zhou, Z.-K.; Su, T. (2022). "Podocarpium (Fabaceae) from the late Eocene of central Tibetan Plateau and its biogeographic implication". Review of Palaeobotany and Palynology. 305 104745. Bibcode:2022RPaPa.30504745L. doi:10.1016/j.revpalbo.2022.104745. S2CID251426221.
^Moya, E.; Soledad Ramos, R.; Jimena Franco, M.; Brea, M. (2022). "African legume affinities with the flora from the lower La Plata Basin (upper Cenozoic), South America". Ameghiniana. 60 (1): 48–64. doi:10.5710/AMGH.25.08.2022.3521. S2CID251872045.
^Wang, Z.; Wu, X.; Sun, B.; Yin, S.; Quan, C.; Shi, G. (2022). "First fossil record of Castanopsis (Fagaceae) from the middle Miocene Fotan Group of Fujian, southeastern China". Review of Palaeobotany and Palynology. 305 104729. Bibcode:2022RPaPa.30504729W. doi:10.1016/j.revpalbo.2022.104729. S2CID251002983.
^Stults, D. Z.; Tiffney, B. H.; Axsmith, B. J. (2022). "New Observations on the Last Pterocarya (Juglandaceae) Occurrences in Eastern North America". International Journal of Plant Sciences. 183 (5): 380–392. doi:10.1086/720182. S2CID247885146.
^Hamersma, A.; Herrera, F.; Wurdack, K.; Manchester, S. R. (2022). "Belenocarpa tertiara (Berry) gen. et comb. nov. (Euphorbiaceae): Fossil Fruits with Carunculate Seeds from the Oligocene of Peru". International Journal of Plant Sciences. 183 (4): 296–306. doi:10.1086/718830. S2CID247214597.
^Poinar, G. (2022). "Plukenetia minima sp. nov. (Euphorbiaceae) in Dominican Republic amber". Historical Biology: An International Journal of Paleobiology. 35 (7): 1250–1254. doi:10.1080/08912963.2022.2086053. S2CID249803131.
^ abManchester, S. R.; Kapgate, D. K.; Samant, B.; Mohabey, D. M.; Dhobale, A. (2022). "Fruits and Pollen of Malvoideae (Malvaceae) in the Maastrichtian–Danian Deccan Intertrappean Beds of Central India". International Journal of Plant Sciences. 184: 68–84. doi:10.1086/723016. S2CID254998257.
^Bansal, M.; Morley, R. J.; Nagaraju, S. K.; Dutta, S.; Mishra, A. K.; Selveraj, J.; Kumar, S.; Niyolia, D.; Harish, S. M.; Abdelrahim, O. B.; Hasan, S. E.; Ramesh, B. R.; Dayanandan, S.; Morley, H. P.; Ashton, P. S.; Prasad, V. (2022). "Southeast Asian Dipterocarp origin and diversification driven by Africa-India floristic interchange". Science. 375 (6579): 455–460. Bibcode:2022Sci...375..455B. doi:10.1126/science.abk2177. PMID35084986. S2CID246360938.
^Dong, J.-L.; Li, Z.; Sun, B.-N.; Gao, J.-X. (2022). "Hemitrapa Miki (Lythraceae) from the middle Miocene tropical lowland rainforest of southern China". Palaeoworld. 32 (4): 626–636. doi:10.1016/j.palwor.2022.11.005. S2CID253698145.
^Cai, J.; Tang, T.; Liang, W.; Han, L.; Li, X.; Dai, Y.; Li, W.; Zhao, J.; Yan, D. (2022). "Fossil fruits of Trapa L. from the late Miocene of southeastern Qaidam Basin (Qinghai, China)". Historical Biology: An International Journal of Paleobiology. 35 (12): 2306–2318. doi:10.1080/08912963.2022.2140045. S2CID253349361.
^El-Noamani, Z. M. (2022). "Ficoxylon fusiforme (Moraceae), a New Species from Upper Cretaceous Nubian Sandstone in Southern Egypt". Egyptian Journal of Botany. 62 (1): 31–44. doi:10.21608/ejbo.2021.53712.1594. S2CID235547996.
^ abDong, J.-L.; Li, Z.; Gao, J.-X.; Sun, B.-N.; He, Y.-L. (2022). "Ficus leaves within the Ficus subgenus Urostigma (Moraceae) from the middle Miocene in South China and their biogeography implications". Review of Palaeobotany and Palynology. 302 104671. Bibcode:2022RPaPa.30204671D. doi:10.1016/j.revpalbo.2022.104671. S2CID248314186.
^ abHazra, T.; Kundu, S.; Bera, S.; Chakraborty, T.; Khan, M. A. (2022). "First fossil evidence of samaras of Ventilago Gaertn. (Rhamnaceae) from India and its implications". Journal of Systematics and Evolution. 61 (6): 1079–1090. doi:10.1111/jse.12936. S2CID265519071.
^Manchester, S. R.; Judd, W. S. (2022). "Extinct Anacardiaceous Samaras and Sumac-Like Leaves from the Eocene of Western North America". International Journal of Plant Sciences. 183 (5): 357–366. doi:10.1086/719948. S2CID247868997.
^Yin, S.-X.; Wu, X.-T.; Wang, Z.-X.; Shi, G.-L. (2023). "First fossil record of Canarium (Burseraceae) from the middle Miocene of Fujian, southeastern China and its paleoecological implications". Palaeoworld. 32 (4): 607–617. doi:10.1016/j.palwor.2022.03.009. S2CID247892804.
^Chen, P.-R.; Del Rio, C.; Huang, J.; Liu, J.; Zhao, J.-G.; Spicer, R. A.; Li, S.-F.; Wang, T.-X.; Zhou, Z.-K.; Su, T. (2022). "Fossil Capsular Valves of Koelreuteria (Sapindaceae) from the Eocene of Central Tibetan Plateau and Their Biogeographic Implications". International Journal of Plant Sciences. 183 (4): 307–319. doi:10.1086/719401. S2CID247394244.
^ abČepičková, J.; Kvaček, J. (2022). "Fossil leaves of Cenomanian basal angiosperms from the Peruc-Korycany Formation, Czechia, central Europe". Review of Palaeobotany and Palynology. 309 104802. 104802. doi:10.1016/j.revpalbo.2022.104802. S2CID253504307.
^Du, B.; Zhang, M.; Zhang, J.; Li, A.; Lin, S.; Ma, G.; Hui, J. (2022). "Herbaceous eudicot Fairlingtonia from the Lower Cretaceous of Jiuquan Basin, Northwest China and its radiation in Laurasia". Journal of Systematics and Evolution. 61 (6): 1065–1078. doi:10.1111/jse.12934. S2CID253561056.
^Cui, D.-F.; Hou, Y.; Yin, P.; Wang, X. (2021). "A Jurassic flower bud from the Jurassic of China". In S-C. Chang; D. Zheng (eds.). Mesozoic Biological Events and Ecosystems in East Asia. Geological Society, London, Special Publications. The Geological Society of London. doi:10.1144/SP521-2021-122. S2CID244737990.
^Wu, G.-T.; Ren, W.-X.; Han, L.; Wang, H.-S.; Hua, Y.-F.; Sun, B.-N. (2022). "A new fossil angiosperm from the Early Cretaceous (early Aptian) of the Zhongkouzi Basin in the Beishan area, Northwest China". Historical Biology: An International Journal of Paleobiology. 35 (11): 2206–2216. doi:10.1080/08912963.2022.2138374. S2CID253298807.
^Oskolski, A. A.; Morris, B. B.; Severova, E. E.; Sokoloff, D. D. (2024). "Flowers from Myanmar amber confirm the Cretaceous age of Rhamnaceae but not of the extant genus Phylica". Nature Plants. 10 (2): 219–222. doi:10.1038/s41477-023-01591-x. PMID38278949.
^Beurel, S.; Bachelier, J. B.; Schmidt, A. R.; Sadowski, E.-M. (2024). "Novel three-dimensional reconstructions of presumed Phylica (Rhamnaceae) from Cretaceous amber suggest Lauralean affinities". Nature Plants. 10 (2): 223–227. doi:10.1038/s41477-023-01592-w. PMID38278948.
^Pessoa, E. M.; Ribeiro, A. C.; Christenhuz, M. J. M.; Coan, A. I.; Jud, N. A. (2023). "Is Santaniella a ranuculid? Re-assessment of this enigmatic fossil angiosperm from the Lower Cretaceous (Aptian, Crato Konservat-Lagerstätte, Brazil) provides a new interpretation". American Journal of Botany. 110 (5): e16163. doi:10.1002/ajb2.16163. PMID37014186. S2CID257922833.{{cite journal}}: CS1 maint: article number as page number (link)
^Edmonds, N. L.; Stockey, R. A.; Rothwell, G. W. (2022). "Late Cretaceous Aquatic Vegetation: Tolmania aquatica gen. et sp. nov., from Southern Alberta, Canada". International Journal of Plant Sciences. 183 (7): 567–575. doi:10.1086/721261. S2CID251354150.
^Kafetzidou, A.; Kouli, K.; Zidianakis, G.; Kostopoulos, D. S.; Zouros, N. (2022). "The early Miocene angiosperm flora of Akrocheiras in Lesvos Petrified Forest (North Aegean, Greece)-Preliminary results". Review of Palaeobotany and Palynology. 296 104559. Bibcode:2022RPaPa.29604559K. doi:10.1016/j.revpalbo.2021.104559. S2CID240195606.
^ abda Conceição, D. M.; Esperança Júnior, M. G. F.; Iannuzzi, R.; Cisneros, J. C. (2022). "Two new petrified gymnosperms with solenoid piths from the Pedra de Fogo Formation, Permian of Maranhão, Brazil". Review of Palaeobotany and Palynology. 299 104622. Bibcode:2022RPaPa.29904622C. doi:10.1016/j.revpalbo.2022.104622. S2CID246459680.
^Shi, G.; Herrera, F.; Herendeen, P. S.; Clark, E. G.; Crane, P. R. (2022). "Silicified cupulate seed-bearing structures from the Early Cretaceous of eastern Inner Mongolia, China: rethinking the corystosperm concept". Journal of Systematic Palaeontology. 20 (1). 2133644. doi:10.1080/14772019.2022.2133644. S2CID253562726.
^Correia, P.; Barbosa, C.; Šimůnek, Z.; Muchagata, J.; Sá, A. A. (2023). "A new species of Lesleya (Spermatopsida) from the Carboniferous of Iberia and its palaeoecological and evolutionary significance". Historical Biology: An International Journal of Paleobiology. 35 (2): 185–196. Bibcode:2023HBio...35..185C. doi:10.1080/08912963.2021.2025364. S2CID246435952.
^Krings, M. (2022). "Algae from the Lower Devonian Rhynie chert: Populations of a probable saccoderm desmid (Mesotaeniaceae, Zygnematales) preserved in a microbial mat". Review of Palaeobotany and Palynology. 304 104697. Bibcode:2022RPaPa.30404697K. doi:10.1016/j.revpalbo.2022.104697. S2CID249165865.
^Rothwell, G. W.; Stockey, R. A.; Stevenson, D. W.; Zumajo-Cardona, C. (2022). "Large Permineralized Seeds in the Jurassic of Haida Gwaii, Western Canada: Exploring the Mode and Tempo of Cycad Evolution". International Journal of Plant Sciences. 183 (8): 674–690. doi:10.1086/721710. hdl:2434/975729. S2CID251947260.
^Li, Y.; Wang, Y.-D.; Feldberg, K.; Wang, S.; Shi, C.; Cui, Y.-M.; Zhang, X.-Q. (2022). "New insights into the moss genus Vetiplanaxis with a description of V. obtusus sp. nov. from the mid-Cretaceous Kachin amber, Myanmar". Review of Palaeobotany and Palynology. 301 104659. Bibcode:2022RPaPa.30104659L. doi:10.1016/j.revpalbo.2022.104659. S2CID247925481.
^Gensel, P. G. (2022). "Partially Permineralized Adpressions of Wilhowia phocarum Gensel gen. et sp. nov., a New Basal Euphyllophyte from the Lower Devonian Battery Point Formation, North Shore of Gaspé Bay, Quebec, Canada". International Journal of Plant Sciences. 183 (7): 604–629. doi:10.1086/721263. S2CID251377842.
^Hu, Y.; Hu, J.; Du, Y.; Lu, H.; Yang, N.; Wang, L.; Xu, H.-H. (2022). "Early Cretaceous palynofloras from the Bongor basin, Chad, and their palaeoenvironmental and palaeoclimatic significances". Journal of African Earth Sciences. 198 104792. 104792. doi:10.1016/j.jafrearsci.2022.104792. S2CID253604754.
^Samant, B.; Puranik, S.; Kapgate, D. K.; Mohabey, D. M.; Dhobale, A. (2022). "Palynoflora from an Upper Cretaceous freshwater paleolake in central India: paleoecological implications". Cretaceous Research. 139 105302. 105302. doi:10.1016/j.cretres.2022.105302.
^DeBenedetti, F.; Zamaloa, M. C.; Gandolfo, M. A.; Cúneo, N. R.; Fensome, R. A.; Gravendyck, J. (2025). "Nomenclatural and taxonomic notes on the fossil pollen genus Sparganiaceaepollenites Thiergart 1937". Palynology. 49 (3). doi:10.1080/01916122.2025.2463407.
^Narváez, P. L.; Mego, N.; Silva Nieto, D. G.; Prámparo, M. B.; Cabaleri, N. G. (2022). "The angiosperm pollen Volkheimerites labyrinthus gen. et sp. nov. from the earliest Paleogene (Danian) of Patagonia, Argentina". Palynology. 46 (4): 1–13. Bibcode:2022Paly...4623681N. doi:10.1080/01916122.2021.2023681. S2CID245584967.
^Huang, J.; Spicer, R. A.; Li, S.-F.; Liu, J.; Do, T. V.; Nguyen, H. B.; Zhou, Z.-K.; Su, T. (2022). "Long-term floristic and climatic stability of northern Indochina: Evidence from the Oligocene Ha Long flora, Vietnam". Palaeogeography, Palaeoclimatology, Palaeoecology. 593 110930. Bibcode:2022PPP...59310930H. doi:10.1016/j.palaeo.2022.110930. S2CID247368063.