2,3-Butanediol is the organic compound with the formula (CH3CHOH)2. It is classified as a vic-diol (glycol). It exists as three stereoisomers, a chiral pair and the meso isomer. All are colorless liquids. Applications include precursors to various plastics and pesticides.
Isomerism
Of the three stereoisomers, two are enantiomers (levo- and dextro-2,3-butanediol) and one is a meso compound.[1][2] The enantiomeric pair have (2R, 3R) and (2S, 3S) configurations at carbons 2 and 3, while the meso compound has configuration (2R, 3S) or, equivalently, (2S, 3R).
Fermentative production of 2,3-butanediol from carbohydrates involves a network of biochemical reactions that can be manipulated to maximize production.[8]
2,3-butanediol has been proposed as a rocket fuel that could be created on Mars by means of cyanobacteria and E. coli, shipped from Earth, working on resources available at the surface of Mars.[9]
2,3-Butanediol has been detected, in peppers, grape wine, anatidaes.
Reactions
2,3-Butanediol undergo dehydration to form butanone (methyl ethyl ketone):[10]
^ abHeinz Gräfje, Wolfgang Körnig, Hans-Martin Weitz, Wolfgang Reiß, Guido Steffan, Herbert Diehl, Horst Bosche, Kurt Schneider and Heinz Kieczka "Butanediols, Butenediol, and Butynediol" in Ullmann's Encyclopedia of Industrial Chemistry, 2000, Wiley-VCH, Weinheim. doi:10.1002/14356007.a04_455
^C. De Mas; N. B. Jansen; G. T. Tsao (1988). "Production of optically active 2,3-butanediol by Bacillus polymyxa". Biotechnol. Bioeng. 31 (4): 366–377. doi:10.1002/bit.260310413. PMID18584617. S2CID36530193.
^"Fermentation Derived 2,3-Butanediol", by Marcio Voloch et al. in Comprehensive Biotechnology, Pergamon Press Ltd., England Vol 2, Section 3, p. 933 (1986).
^Jansen, Norman B.; Flickinger, Michael C.; Tsao, George T. (1984). "Application of bioenergetics to modelling the microbial conversion of D-xylose to 2,3-butanediol". Biotechnol Bioeng. 26 (6): 573–582. doi:10.1002/bit.260260603. PMID18553372. S2CID22878894.