Ein monotoner Operator ist ein Begriff aus der Mathematik aus dem Teilgebiet der nichtlinearen Funktionalanalysis. Sie sind besondere (nicht lineare) Operatoren und eine Verallgemeinerung der monotonen reellen Funktionen einer Variable.
Definition
Es seien
ein normierter Raum und
eine konvexe Teilmenge von
. Ein (nicht linearer) Operator
heißt monoton, falls für alle
die Ungleichung

gilt. Hierbei bezeichnet
den topologischen Dualraum von
und
die duale Paarung
.[1]
Diesen Begriff kann man wörtlich auf allgemeinere Raumklassen, insbesondere auf lokalkonvexe Räume, übertragen. Weiter kann dieser Begriff auf mengenwertige Funktionen
ausgedehnt werden. Eine solche Funktion heißt dann monoton, falls für alle
und
die Ungleichung

gilt.[2]
Anwendung
Der Begriff des monotonen Operators hat viele Anwendungen in der nichtlinearen Funktionalanalysis, insbesondere bei nichtlinearen partiellen Differentialgleichungen.[3]
Literatur
- Heinz H. Bauschke & Patrick L. Combettes: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer New York, New York, NY 2011, ISBN 978-1-4419-9466-0.
- R. E. Showalter: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, 2014, ISBN 978-1-4704-1280-7 (englisch).
Einzelnachweise
- ↑ R. E. Showalter: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, 2014, ISBN 978-1-4704-1280-7, S. 37 (englisch).
- ↑ Regina S. Burachik, Alfredo N. Iusem: Set-Valued Mappings and Enlargements of Monotone Operators, Springer-Verlag (2008), ISBN 978-0-387-69755-0
- ↑ Klaus Deimling: Nonlinear Functional Analysis. 1. Auflage. Springer-Verlag, Berlin/Heidelberg 1985, ISBN 3-540-13928-1, Kap 3.